Saiba quais foram os principais avanços tecnológicos do mundo da ciência
1. Reprogramação celular – A criação das chamadas células pluripotentes, células-tronco capazes de se diferenciar e se transformar em qualquer tipo de célula do corpo, pode tornar possível a reposição de tecidos sem rejeição
2. Biomoléculas de milhões de anos – pesquisadores descobriram que biomoléculas podem sobreviver milhares de anos, guardando importantes informações científicas. A descoberta permitiu, por exemplo, que o genoma de mulheres neandertais fosse sequenciado
3. Água em Marte – descoberta de fortes evidências da presença de água há bilhões até mesmo na superfície do Planeta Vermelho
4. Entendendo o RNA – Antes visto como a “matéria escura” do DNA, os cientistas passam a entender melhor o importante papel do RNA na sintetização de proteínas e construção do genoma
5. Simulação quântica – comportamento de cristais artificiais é simulado em computador
6. Novos materiais – Físicos e engenheiros criaram os chamados “metamateriais”, lentes capazes de desafiar as leis de Newton e manipular a luz, criando verdadeiras capas de invisibilidade
7. Receita para o Cosmo – Nos últimos anos, cientistas conseguiram deduzir uma “receita” precisa para a composição do Universo. Estudos sobre a quantidade de matéria, de matéria escura e sobre a taxa de aceleração do cresciemento do universo se tornaram cada vez mais precisos
8. Microbioma – descoberta envolve os micro-organismos que não causam danos à saúde. Segundo a Science, 9 em 10 células do corpo humano são micróbios
9. Exoplanetas – o número de planetas descobertos fora do sistema solar saltou de 26 no ano 2000 para 502 em 2010 com o lançamento da sonda Kepler, da Nasa. O objetivo da missão é encontrar planetas similares à Terra que possam abrigar vida
10. Inflamações – cientistas descobriram que esses processos estão por trás de doenças crônicas como Alzheimer e aterosclerose
11. Mudanças climáticas – avanços no estudo do aquecimento global comprovaram que as temperaturas mundiais não param de subir
Insights of the Decade
The Dark Genome •International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human genome” Nature 409, 860 (2001).
•J. C. Venter et al., “The Sequence of the Human Genome’” Science 291, 1304 (2001).
•G. Riddihough, “In the Forests of RNA Dark Matter,” Science 309, 1507 (2005).
•P. Kapranov, P et al., “Genome-wide transcription and the implications for genomic organization,” Nature Rev. Genet. 8, 413 (2007).
•E. Birney, et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature 447, 799 (2007).
•J. Couzin, “Small RNAs Make Big Splash” Science 298, 2296 (2002).
Precision Cosmology •Wilkinson Microwave Anisotropy Prope (WMAP) Science and Instrument Papers (NASA)
•WMAP Build-Your-Own-Universe Game (NASA)
Ancient DNA •R. Green et al., “A Draft Sequence of the Neandertal Genome,” Science 328, 710-722 (2010).
•A. W. Briggs et al., ” Targeted retrieval and analysis of five Neandertal mtDNA genomes,” Science 325, 318 (2009).
•H. N. Poinar et al., “Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA,” Science 311, 392 (2006).
•Q. Li, et al., “Plumage Color Patterns of an Extinct Dinosaur,” Science 327, 1369-1372 (2010).
•A. Gibbons, “New Methods Yield Mammoth Samples,” Science 310, 1889 (2005).
•M. Balter, “Ancient DNA From Siberia Fingers a Possible New Human Lineage,” Science 327, 1556-1557 (2010).
•The Neandertal Genome Project at the Max Planck Institute for Evolutionary Anthropology
•The Mammoth Genome Project Web Site
Water on Mars •R. A. Kerr, “A Dripping Wet Early Mars Emerging from New Pictures,” Science 290, 1879 (2000).
•R. A. Kerr, “A Wet Early Mars Seen in Salty Deposits,” Science 303, 1450 (2004).
•R. A. Kerr, “Breakthrough of the Year: On Mars, a Second Chance for Life,” Science 306, 2010 (2004).
•R. A. Kerr, “Majority Rules in Finding a Path for the Next Mars Rover,” Science 318, 908 (2007).
•R. A. Kerr, “Liquid Water Found on Mars, but It’s Still a Hard Road for Life,” Science 330, 571 (2010).
•NASA Phoenix Mars Lander Mission
•NASA’s Mars Science Laboratory
Reprogramming Cells •J. M. W. Slack, “Conrad Hal Waddington: the last Renaissance biologist?,” Nature Rev. Genet. 3, 889-895 (2002).
•J. B. Gurdon, “From Nuclear Transfer to Nuclear Reprogramming: The Reversal of Cell Differentiation,” Annu. Rev. Cell Dev. Biol. 22, 1-22 (2006).
•K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell 126, 663-676 (2006).
•K. Takahashi et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell 131, 861-872 (2007).
•J. Yu et al., “Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells,” Science 318, 1917-1920 (2007).
•Q. Zhou et al., “In vivo reprogramming of adult pancreatic exocrine cells to bold beta-cells,” Nature 455, 627-632 (2008).
•G. Vogel, “Diseases in a Dish Take Off,” Science 330, 1172-1173 (2010).
•L. Warren et al., “Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA,” Cell Stem Cell 7, 618-630 (2010).
The Microbiome •J. Qin, “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature 464, 59 (2010).
•P. B. Eckburg et al., “Diversity of the Human Intestinal Microbial Flora,” Science 308, 1635 (2005).
•F. Backhed et al., “Host-bacterial mutualism in the human intestine,” Science 307, 1915 (2005).
•S. R. Gill, et al., “Metagenomic analysis of the human distal gut microbiome,” Science 312, 1355 (2006).
•P. J. Turnbaugh et al., “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature 444, 1027 (2006).
•E. Barton et al., “Herpesvirus latency confers symbiotic protection from bacterial infection,” Nature 447, 326 (2007).
•International Human Microbiome Consortium
•Human Microbiome Project
Exoplanets •The Extrasolar Planets Encyclopaedia
•NASA Kepler Mission
Inflammation •C.M. Larsen et al., “Interleukin-1-Receptor Antagonist in Type 2 Diabetes Mellitus,” N. Engl. J. Med. 356, 1517 (2007).
•G. Taubes, “Does Inflammation Cut to the Heart of the Matter?,” Science 296, 242 (2002).
•P. Duewell et al., “NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals,” Nature 464, 1357 (2010).
•H. Xu et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” J. Clin. Invest. 112, 1821 (2003).
•S.P. Weisberg et al., “Obesity is associated with macrophage accumulation in adipose tissue,” J. Clin. Invest. 112, 1796 (2003).
•C. Nathan, “Epidemic Inflammation: Pondering Obesity,” Mol. Med. 14, 485 (2008).
•J. Marx, “Inflammation and Cancer: The Link Grows Stronger,” Science 306, 966 (2004).
•J. Condeelis and J.W. Pollard, “Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis,” Cell 124, 263 (2006).
•M. Ammirante et al., “B Cell-Derived Lymphotoxic Promotes Castration-Resistant Prostate Cancer,” Nature 464, 302 (2010).
•S. Boillée et al., “Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia,” Science 312, 1389 (2006).
•H. M. Gao et al., “Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration,” J. Neurosci. 28, 7687 (2008).
•C. K. Glass et al., “Mechanisms Underlying Inflammation in Neurodegeneration,” Cell 140, 918 (2010).
Metamaterials •U. Leonhardt, “Optical Conformal Mapping,” Science 312, 1777 (2006).
•J. Pendry et al., “Controlling Electromagnetic Fields,” Science 312, 1780 (2006).
•D. Schurig et al., “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977 (2006).
•T. Ergin et al., “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328, 337 (2010).
Climate Change •R. A. Kerr, “Scientists Tell Policymakers We’re All Warming the World,” Science 315, 5813 (2007).
Quantum Machine •A. D. O´Connell et al., “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697 (2010).
•S. Gröblacher et al., “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nature Phys. 5, 485 (2009).
•A. Schliesser et al., “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nature Phys. 5, 509 (2010).
•Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489 (2010).
•T. Rocheleau et al., “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72 (2009).
•B. Abbott et al., “Observation of a kilogram-scale oscillator near its quantum ground state,” New Journal of Physics 11, 073032 (2009).
Build Your Own Genome •D. G. Gibson et al., “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome,” Science 329, 52 (2010).
•E. Pennisi, “Synthetic Genome Brings New Life to Bacterium,” Science 328,958 (2010).
•S. Kosuri et al., “Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips,” Nature Biotechnol. 28, 1295 (2010).
•J. M. Callura et al., “Tracking, tuning, and terminating microbial physiology using synthetic riboregulators,” Proc. Natl. Acad. Sci. U.S.A. 107, 15898 (2010).
•S. J. Culler et al., “Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins,” Science 330, 1251 (2010).
•J. Sinha et al., “Reprogramming bacteria to seek and destroy an herbicide,” Nature Chemical Biology 6, 464 (2010).
•S. Venkataraman et al., “Selective cell death mediated by small conditional RNAs,” Proc. Natl. Acad. Sci. U.S.A. 107, 16777 (2010).
Reading the Neandertal Genome •R. E. Green et al., “A Draft Sequence of the Neandertal Genome,” Science 328, 710 (2010).
•H. A. Burbano et al., “Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture,” Science 328, 723 (2010).
•A. W. Briggs et al., “Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes,” Science 325, 318 (2009).
•A. Gibbons, “Close Encounters of the Prehistoric Kind,” Science 328, 680 (2010).
•E. Pennisi, “Cloned Neandertals Still in the Realm of Sci-Fi,” Science 325, 682 (2010).
•The Neandertal Genome Project at the Max Planck Institute for Evolutionary Anthropology
•The Neandertal Genome web page at Science
Next-Generation Genomics •The 1000 Genomes Project Consortium, “A map of human genome variation from population-scale sequencing,” Nature 467, 1061 (2010).
•S. E. Celniker et al., “Unlocking the secrets of the genome,” Nature 459, 927 (2009).
•S. C. Schuster et al., “Complete Khoisan and Bantu genomes from southern Africa,” Nature 463, 943 (2010).
•M. Rasmussen et al., “Ancient human genome sequence of an extinct Palaeo-Eskimo,” Nature 463, 757 (2010).
•J. C. Roach, et al., “Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing” Science 328, 636 (2010).
HIV Prophylaxis •Abstract for XVIII International AIDS Conference, “Safety and Effectiveness of 1% Tenofovir Vaginal Microbicide Gel in South African Women: Results of the CAPRISA 004 Trial”
•R. M. Grant et al., “Preexposure Chemoprophylaxis for HIV Prevention in Men Who Have Sex with Men,” N. Engl. J. Med., 23 November 2010 (10.1056/NEJMoa1011205).
•AIDS Vaccine Advocacy Coalition on PrEP
•iPrEx Study Site
•CAPRISA
Homing In on Errant Genes •J. Kaiser, “Affordable ‘Exomes’ Fill Gaps in a Catalog of Rare Diseases,” Science 330, 903 (2010).
•S. B. Ng et al., “Massively parallel sequencing and rare disease,” Hum. Mol. Genet. 19, 119 (2010).
•K. Bilgüvar et al., “Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations,” Nature 467, 207 (2010).
•K. Musunuru et al., “Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia,” N. Engl. J. Med. 363, 2220 (2010).
•S. B. Ng et al., “Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome,” Nature Genet. 42, 790 (2010).
Rats Redux •A. M. Geurts et al., “Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases,” Science 325, 433 (2009).
•C. Tong et al., “Production of p53 gene knockout rats by homologous recombination in embryonic stem cells,” Nature 467, 211 (2010).
•D. Normile, “One-Two Punch Elevates Rats to the Knockout Ranks,” Science 329, 892 (2010).
Molecular Dynamics Simulations •D. E. Shaw et al., “Atomic-Level Characterization of the Structural Dynamics of Proteins,” Science 330 , 341 (2010).
Quantum Simulators Pass First Key Test •H. Weimer et al., “A Rydberg quantum simulator,” Nature Phys. 6, 382 (2010).
•K. Kim et al., “Quantum simulation of frustrated Ising spins with trapped ions,” Nature 465, 590 (2010).
•S. Trotzky et al., “Suppression of the critical temperature for superfluidity near the Mott transition,” Nature Phys. 6, 998 (2010).
•K. Baumann et al., “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301 (2010).
•W. S. Bakr et al., “Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level,” Science 329, 547 (2010).
•Y. Liao et al., “Spin-imbalance in a one-dimensional Fermi gas,” Nature 467, 567 (2010).
Souped-Up Cellular Reprogramming •L. Warren et al., “Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA,” Cell Stem Cell 7, 618 (2010).
*****************************
FONTE : matéria do Estadão.com.br, com informações complementares do EcoDebate, 11/11/2011
Nenhum comentário:
Postar um comentário